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ENGINEERING MODEL DEVELOPMENT OF SELECTED RESERVOIR HETEROGENEITIES
IN BELL CREEK FIELD UNIT A

By B. Sharma, L. Tomutsa, M. Honarpour, and M. Szpakiewicz

ABSTRACT

Based on geological and production data, an initial improved engineering
model of the barrier island Muddy formation deposit at Bell Creek oilfield,
Montana and the important geological heterogeneities encountered in a four
section area in Unit 'A' of the reservoir were constructed. In the geological
model of the reservoir, the barrier island payzone thickness varies from its
maximum value of over 20 ft in the center of the deposit to less than 2 ft at
the eastern and western edges. There are drastic variations in both
permeability and porosity values in the area investigated, and this variation
is more pronounced from the center of the deposit to the edges. Because of
their similar porosity and permeability distributions and log signatures, two
facies (upper shoreface and foreshore) of the barrier island deposit have been
grouped into a single flow unit. |

Production performance analysis for Bell Creek field indicates that the
main heterogeneities affecting the fluid flow in this barrier island/valley
fill complex are location and geometry of the valley incisions, Stacking
patterns of facies with highly variable permeability values, areas of low
permeability due to high clay content, and faults.

Simulations and single-well history matching of primary oil and gas
production have been used to define more accurately fluid and rock-fluid
parameters used in the simu1ator input file where field data were insufficient
for rigorous simulation. Although acceptable matches have been obtained, more
accurate data are needed regarding actual permeability tec reservoir fluids
(instead of gas permeability), relative permeabilities, and bottomhole
pressure to improve the usefulness of simulations as tests for the accuracy of
the reservoir model. Research in some of these areas of investigation is
proposed in the FY88 research plan.
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INTRODUCTION

The broad objective of the NIPER geoscience research program is to develop
a methodology to determine the effect of various heterogeneities in a barrier
jsland deposit in controlling the movement and trapping of 0il. The
geological model of the reservoir built with information extracted from cores,
logs, and analogous outcrops is being used in constructing an engineering
model of the reservoir. By comparing the results of simulations performed on
the engineering model with actual field data, conclusions can be drawn about
the adequacy of the engineering model and about the effect of various
reservoir heterogeneities on oil production.

The preliminary geological model of Bell Creek reservoir in Sections 22,
23, 26, and 27 in Unit 'A' gives an identification and estimate of the
lithostratigraphy, petrophysics, and stacking patterns of the various
geological facies within the reservoir. The geological heterogeneities which
have the greatest effect on fluid flow in the reservoir appeér to be the
result of changes in geometry of the barrier island/valley fill complex,
stacking patterns of multifacial productive, potentially productive and
‘nonproductive zones, internal architecture of barrier island deposits with
emphasis on clay distribution, diagenetic a]teratidns, and blocking and
faulting of the entire Muddy formation.

GEOLOGICAL-ENGINEERING MODEL

Geology

The producing sandstone in the Unit A, Bell Creek field, Montana (Fig. 1)
is part of the Lower Cretaceous Muddy formation. It is composed of two
genetically different major sandstone reservoir units interpreted as (a)
barrier islands (1ittoral marine bars), and (b) valley fills. The entire

producing sandstone is underlain by Sku11 Creek shale and overlain by Shell
Creek/Mowry shale.

The 011 productivity in Bell Creek, Unit A is affected by at least four



geological factors:

(1) architecture of the barrier island facies (stacking and lateral
extent of various facies); '

(2) distribution and type of diagenesis (clay, compaction);

(3) relative location of valley fill deposits and the barrier
sandstone deposit; and

(4) local faulting.

Reservoir Framework

A structure contour map on the top of the barrier island sandstone (Fig.
2) shows a general northwest dip at a 90 to 100 ft/mile rate. The isopach map
(Fig. 3) shows a maximum thickness of the deposit to be about 29 ft in the
central part of the four-section area under study. The thickness gradually
decreases toward the southeast and northwest.

The flexures in the contour 1ines drawn on the top of the sandstone
complex in both maps indicate either possible faulting or valley incisions, or
both. The flexures at the western extremity of reservoir boundary are
generally interpreted as deep valley cuts (Fig. 3).

Variations in the stratigraphy of the barrier jsland facies are indicated
in the two stratigraphic cross-sections AA' and BB' (locations shown in Fig.
1) using gamma ray logs (Fig. 4) and core data. The gamma ray and sonic logs
were calibrated using core-derived facies interpretations. Cross section AA'
is parallel to, and the cross-section BB' is perpendicular to, the
depositional strike of the barrier island deposit. In these cross-sections,
the variations in the thicknesses of foreshore, uppershoreface, and
lowershoreface facies are indicated. The foreshore and uppershoreface facies
in these cross-sections have similar core-plug derived horizontal permeability
and porosity distributions and similar log signatures; therefore these facies
have been grouped into a single flow unit.

Cross section AA' indicates that the thickness and the reservoir quality
of the barrier island sandstone improves from southwest to northeast near the
central part of the barrier deposit. Good reservoir quality and high rates of
0il production in well P2 are due to the massive and crossbedded sandstones in



the upper shoreface and foreshore facies, respectively.

In well C-8, the facies development and the related sedimentary structures
within the barrier are generally comparable to those encountered in well P2,
but the reservoir quality of the sandstone is reduced because of the larger
proportion of silt and clay. Further southwest, in the well 27-14 area, the
reservoir quality is diminished further mainly because of the higher
-percentage of clay cementation.

Rock Properties

Cross sections AA' and BB' (Fig. 4) show evidence of strong permeability
stratification resulting from various reservoir heterogeneities. Permeability
variations along these two sections suggest that the Tow-permeability streaks
are rather Timited in lateral extent and do not subdivide the foreshore and
uppershore face facies of the barrier sandstones into separate flow units.

A partial map of the geometric means of air permeability distributions in
the four-section area under study is shown in figure 5. This map indicates
that the mean permeabilities decrease from the center toward both the eastern
and western edges of the bar. '

The porosity map shown in figure 6 was derived using 51 density logs. It
shows zones with highest porosities near the axial position and slightly east
of it in the barrier island deposit.

The sharp changes in contour patterns in figures 2, 3, and 6 in the
extreme northern parts of Seétions 26 and 27 could be due to a northwest,
southeast trending fault if the structural map drawn on the base of Muddy
formation would follow a similar pattern.

Reservoir Fluids and Rock-Fluid Properties

Data on fluids and rock-fluid properties for reservoir simulation were
obtained using (1) measured values from published reportsz‘=3 and (2)
correlation formulas.  These were further refined by matching the primary gas
production in the BOAST single-well simulation using oil rates specified for
selected wells. A three-layer model with 7x7x3 ft gridding and completed only
in the lower part of the payzone (in agreement with well completion records)
gave the best agreement with the field production data, as shown in figure



7. Nevertheless, the simulations show an excess of gas production, which
requires a better determination of the gas-fluid relative permeability. Using
actual liquid permeability values instead of air permeability values is aiso
expected to improve the agreement of field data and simulation results.

A copy of the input data file is displayed in table 1, and the
nomenclature of the various terms is presented at the end of the table.

SUMMARY AND CONCLUSIONS

1. An initial improved engineering model of Bell Creek reservoir in
Sections 22, 23, 26, and 27 has been constructed.

2. The heterogeneities which most affect the fluid flow are barrier
island facies distributions; valley incisions into the top of the barrier
filled with continental and marine, non-barrier deposits; and probable faults.

3. Further core and log analyses from both reservoir and outcrop are
needed to locate more accurately the valley fills.

4, Single-well simulations were used in history matching to refine the
rock and fluid parameters when measurements were too few or unavailable.

5. In specific locations where production or well test data indicate the
possible existence of faults or low-permeability régions, multiwell
simulations are needed to define the influence of these heterogeneities on
fluid flow in the reservoir,

6. More and/or better reservoir pressure data, relative permeability
data, and permeability to reservoir fluids data are needed to improve increase
the accuracy of simulation predictions and to improve the effectiveness of
using simulation as a tool to verify the geological/engineering model of the
reservoir.
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NOMENCLATURE

fluid saturation (fraction)

0il phase relative permeability (fraction)

water phase relative permeability (fraction)

gas phase relative permeability (fraction)

oil/water capillary pressure (psi)

gas/oil capillary pressure (psi)

initial oil bubble point pressure (psia)

slope of the oil viscosity vs pressure for undersaturated oil
(cp/psi)

slope of the oil formation volume factor vs pressure for under
saturated oil (RB/STB/psi)

slope of the solution gas-oil ratio vs pressure for undersaturated
0il (SCF/STB-psi)

maximum pressure entry in tasks (psia)

pressure (psia)

saturated oil viscosity (cp)

saturated oil formation volume factor (RB/STB)

saturated oil gas-oil ratio (SCF/STB)

water viscosity (CP)

water formation volume factor (RB/STB)

water solution gas-water ratio (SCF/STB)

gas viscosity (CP)

gas formation volume vo]um§ factor (RCF/SCF)

rock compressibility (psi™")

stock tank o1l density (1b/ cu ft)

stock tank water density (1b/cu ft)

gas density at standard conditions (1b/cu ft)
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